a2 United States Patent

Cartron et al.

US009135110B2

US 9,135,110 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND DEVICE FOR ENHANCING
THE RELIABILITY OF A MULTIPROCESSOR
SYSTEM BY HYBRID CHECKPOINTING

(75) Inventors: Mickaél Cartron, Chatillon (FR);
Yoann Congal, Plaisir (FR)

COMMISSARIAT A L’ENERGIE
ATOMIQUE ET AUX ENERGIES
ALTERNATIVES, Paris (FR)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 128 days.
(21) Appl. No.: 13/991,128
(22) PCT Filed: Nov. 24, 2011
(86) PCT No.:

§371 (),
(2), (4) Date:

PCT/EP2011/070978

Jun. 12,2013

(87) PCT Pub. No.: W0O2012/072500
PCT Pub. Date: Jun. 7,2012

(65) Prior Publication Data
US 2013/0254591 Al Sep. 26, 2013

(30) Foreign Application Priority Data

Dec.1,2010 (FR) coovoooooveoeeeeeccceeseeeeeee. 10 59989
(51) Int.CL
GOGF 11/00
GOGF 11/10
GOGF 11/14
(52) US.CL
CPC ... GOGF 11/1008 (2013.01); GOGF 11/141
(2013.01); GOGF 11/1402 (2013.01); GO6F
11/1438 (2013.01)

(2006.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
CPC GOG6F 11/1008; GO6F 11/1438; GO6F
11/141; GOGF 11/073; GOGF 11/1402; GO6F
11/1446; GOGF 11/1448; GOGF 11/1458;
GOG6F 11/1469; GO6F 11/3017; GOG6F 11/3037
USPC .o 714/20, 6.11, 6.1, 10, 15
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,923,832 A 7/1999 Shirakihara et al.

6,044,475 A * 3/2000 Chungetal. 714/15
6,393,583 B1* 5/2002 Methetal. ... 714/12
6,658,589 Bl 12/2003 Taylor

2006/0101033 Al
2009/0182782 Al 7/2009 Karve et al.
2010/0251031 Al* 9/2010 Niehetal. ... 714/45

OTHER PUBLICATIONS

5/2006 Hu et al.

K. Mani Chandy, et al., “Distributed Snapshots: Determining Global
States of Distributed Systems”, ACM Transactions on Computer
Systems, Feb. 1985, pp. 63-75, vol. 3, No. 1.

* cited by examiner

Primary Examiner — Joseph D Manoskey
(74) Attorney, Agent, or Firm — Baker & Hostetler LLP

(57) ABSTRACT

The present invention relates to a method and a device for
enhancing the reliability of a system comprising a plurality of
processors and a memory. The method comprises a step of
grouping processes into a plurality of groups and a step of
saving, individually for each group of processes, data stored
in the memory which can be used by at least one of the
processes belonging to said group, so as to restore an error-
free global state of the system following an error occurring in
a processor executing one of the processes belonging to said
group without having to restore the entire memory.

7 Claims, 9 Drawing Sheets

SDD Pid

10

20

U.S. Patent Sep. 15, 2015 Sheet 1 of 9 US 9,135,110 B2

Pid

MEM

SDD
FIG. 1

US 9,135,110 B2

¢ Ol

Alows
Ja|jou0n

(48]]00U0D JUI0dNDO8YD)
OAB|S

Sheet 2 of 9

A

oAB|S

Sep. 15, 2015

. ZNNIN

U.S. Patent

Y'Y ¢d
NJd/dO

uonoae(]

(Joj|0nu0D NVY)

AJd/dO

uonoaa(]

US 9,135,110 B2

Sheet 3 of 9

Sep. 15, 2015

U.S. Patent

004

J9||021u0D) AloWBs|N

aHv

¢ 9Old

[e
|
I JHOVO d0 901dO
“ A 7 Y
|
|
| 004 903
|
|
“ v \ 4
| juswabeuew| puswabeuew wswabeuew
| 82IN0S8. 992IN0sal 90JN0SalJ
“ ayoed 601 W
_ OIANOD 93Y
|
|
|
|
|

| _

adv | _
“ —> 7410 dD ovd43d THLO49HY
|

W3IN

U.S. Patent Sep. 15, 2015 Sheet 4 of 9 US 9,135,110 B2

P, SDD, CP, @, Value

PT_FIN

FIG. 4

PT _DEBUT

US 9,135,110 B2

Sheet 5 of 9

Sep. 15, 2015

U.S. Patent

G Ol

ainpaooud ainpaosoud Alowow ainpaosoud ainpaosoud ainpadoid
uonejuswbeneq uoneasd 49 Buipeey BIIM JNETYLENY uonsep 4o
(lea @) (d0 ‘aas) h
¢dD & 0 uonealn ¢peay ¢ h1an00ay (¢0 ‘aas)

EOWIM

¢91910sq0

US 9,135,110 B2

Sheet 6 of 9

Sep. 15, 2015

U.S. Patent

/. 9ld

HH

aas

90Ol

A = @ NIN

A

Y
>

ayoed sy ul (@) ‘Boj
ut (pjo ‘@) o uonippy

® WA = plo

¢bojul @

aas ©

S3A

ayoe)d

US 9,135,110 B2

Sheet 7 of 9

Sep. 15, 2015

U.S. Patent

[

pIS
aul| 8yoed Jes|)

69l4

—dld

MBS == d1d

(4Ld) Boq1egD

PIO = < P10 " (H1d) 601
%P
PIS = pIS” (H1d) BoT

(41d) 607
Buipeay

A

pud =Hld

|

} A__QMMOV 1
A 99
SN
A M, —
T N
// 9 .
894
xnwag sepoouz N
Aouy
AN
[«
—>
1 u 1
1 1
1\ 1
-
o_%cmscim aas @) d
aas © b

US 9,135,110 B2

Sheet 8 of 9

Sep. 15, 2015

U.S. Patent

1179I14

01'9ld

-—-dld

MBS == Hld

(d1d) Boue8)

(P1s ‘p10) =

S3A (41d) 6o1

(41d) 607
Buipesy

aasiio

N\ aas

E

puz =Hld

I

aas

U.S. Patent Sep. 15, 2015 Sheet 9 of 9 US 9,135,110 B2

!

Updating the register storing
the CP number for the
requested SDD

Cleaning the CP Cache
for the requested SDD

i FIG.12

\ 4

PT_LIBRE searches for a free location
between PT_FIN and PT_DEBUT

<>

ES

PT_OBJET searches for an occupied
line between PT_LIBRE and PT_DEBUT

YES

PT_DEBUT is set to PT_LIBRE+1

PT_OBJET line is moved to PT_LIBRE

NO PT_OBJET = PT_DEBUT?

PT_DEBUT is set to PT_LIBRE

|
FIG.13

US 9,135,110 B2

1
METHOD AND DEVICE FOR ENHANCING
THE RELIABILITY OF A MULTIPROCESSOR
SYSTEM BY HYBRID CHECKPOINTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of International patent
application PCT/EP2011/070978, filed on Nov. 24, 2011,
which claims priority to foreign French patent application
No. FR 1059989, filed on Dec. 1, 2010, the disclosures of
which are incorporated by reference in their entirety.

FIELD OF THE INVENTION

The present invention relates to a method and a device for
enhancing the reliability of a multiprocessor system by
hybrid checkpointing. It is applicable notably in the field of
embedded multiprocessor systems.

BACKGROUND

The general problem is the reliability of multiprocessor
systems, in the logic of which transient faults can occur and
lead to failures. For example, there may be a fault in the logic
of one of the processors. Such transient faults may be due to
temporary disruptions such as falling neutron or proton par-
ticles, to radiation such as gamma radiation or to inductive
noise on the power supply. Indeed, current multiprocessor
technologies are increasingly sensitive to such disruptions,
due to the ever higher level of integration in terms of surface
density of transistors and total number of transistors. In order
to facilitate critical applications with a high level of reliabil-
ity, it is desirable to guard against these transient faults, which
may be propagated in memory.

In an attempt to solve the problems associated with tran-
sient faults, techniques based on memory Error Correcting
Codes, or ECC in English, have been developed. These tech-
niques are flexible, since the correction power of the code can
be adapted to the targeted environmental conditions and the
expected level of reliability. In addition, they are easy to
implement since the coder/decoder is shared for all memory
locations, which enables a low surface overhead to be gener-
ated for control. A major drawback of these techniques is that
they can only be used due to the regularity of typical memory
structure. Unfortunately the errors occurring in processor
logic (as opposed to memory) do not offer such regularity.

Other approaches have been explored in an attempt to
enhance the reliability of the logic of multiprocessor systems,
notably approaches based on spatial duplication, approaches
based on multisampling or ‘pointing-oriented’ approaches,
better known in English as checkpointing.

Approaches based on spatial duplication exist in several
variants, but the common idea is to perform the desired cal-
culation simultaneously on several identical logic circuits and
to react in the event of observing a difference in the outputs.
One variant consists in having two instances of the circuit to
be protected, associated with a detection mechanism on at
least one of the instances for determining which of the two
instances has suffered the error. This spatial duplication vari-
ant, however, has several drawbacks. First of all, the logic has
to be duplicated and as soon as a transient error has occurred,
the two instances have then diverged, which requires adding
a system for resynchronizing the two instances. In addition,
the error detection is on the critical path of the data stream,

10

15

20

25

30

35

40

45

50

55

60

65

2

which is detrimental to performance and requires a very fast
detector to be chosen, at the expense of its complexity and its
error coverage.

Another variant is to have three instances in parallel and a
majority vote at the output. This method avoids placing a
detector in one of the instances like the two-instance method
previously described, but it displays a majority vote system
on the critical path of the data stream, which again is detri-
mental to performance. In addition, the tripling of the logic is
very expensive in surface.

Approaches based on multisampling consist in replacing
all the flip-flops of a circuit with special flip-flops for sam-
pling the signal several times. Statistically, in the event of
temporary disruption and if the system is properly dimen-
sioned, i.e. if its operating frequency is not too high, the
conditions can be met for there to be little chance that an error
would affect all the samples. There are basically two variants
of multisampling: pre-sampling and post-sampling. In all
cases, these methods are expensive in surface and fault toler-
ance is partial and difficult to achieve.

Indeed, a major drawback of pre-sampling is that it limits
the operating frequency of the system and hence its perfor-
mance. But in the event of divergence, the second sample is
statistically more likely to be correct, since many transient
faults result in an increased latency. Pre-sampling is therefore
a method of fault detection and probable fault tolerance.

While in the case of post-sampling, the fault can only be
detected, not tolerated. This is one of its major drawbacks.

Finally, checkpointing-oriented approaches, according to
the English expression, consist notably in periodically plac-
ing the data of the security monitored system in a storage
memory, with the object of reusing them later if needed for
recovering the system state. In the rest of the present appli-
cation, the term “checkpointing approach” or “checkpointing
system” will be used for designating a checkpointing-ori-
ented approach or a system implementing such an approach.
In the rest of the present application, all the data stored in a
storage step implemented as part of a checkpointing approach
will be referred to simply as a “checkpoint”. Checkpointing
approaches can be used to put the monitored system back to a
state prior to the occurrence of the fault and all its conse-
quences. In order to create a system tolerant to transient faults
in logic, it is further necessary to combine the checkpointing
system with fault or error detectors. This checkpointing
approach then assumes that the monitored system has not
suffered any faults and detection is performed in parallel with
the function of the monitored block. Detection is then referred
to as “outside the critical path,” which maximizes perfor-
mance while it remains possible to cancel actions. If the
assumption that the monitored system has operated properly
proves correct, then it simply continues its execution. Other-
wise, the monitored system stops its operation and its fault-
free state with all its consequences is then restored.

Checkpointing approach variants are distinguished firstly
by the extent of their recovery capacity. For example, some
checkpointing systems are limited by the extent of a proces-
sor, the English term “rollback” then being used. In this case,
it is possible to undo incorrect actions in the processor, but all
actions outside the processor, such as reading and writing to
the memory space, cannot be canceled. This checkpointing
approach must therefore be combined with fault or error
detectors with very low latency, optionally at the expense of
detection coverage. Other checkpointing systems extend over
more extensive systems than the single processor. This then
allows high detection latency and it can be used to maintain
high performance due to the fact that the detection is per-
formed outside the critical path.

US 9,135,110 B2

3

Checkpointing approach variants are also distinguished by
the control policy. In the case of a multiprocessor system with
several memory modules, each processor and each memory
module manages its own control independently whether for
verification or storage. The global checkpointing policy may
then vary from one system to another: it may be coordinated
or uncoordinated.

Coordinated approaches offer to create global and coordi-
nated checkpoints for the whole system. Checkpoints are thus
consistent by construction and therefore rapidly obsolete,
which tends to reduce the number of checkpoints stored
simultaneously and thus to reduce the volume of storage.
However, when a component or application requires a check-
point, it takes the whole system into this decision. While this
behavior is acceptable in simple contexts, e.g. when there are
few processors and a few unconnected applications, it
becomes unacceptable when the system increases in com-
plexity, e.g. in cases of multiprocessors and/or multiapplica-
tions. Thus, this coordinated approach easily leads to a situ-
ation where the “global worst case” has to be managed, i.e.
where the cost (in memory and performance) of synchroni-
zation becomes predominant since checkpoints become very
frequent and where concurrently the checkpoints to be stored
are very bulky since they are global.

Conversely, an uncoordinated checkpoint policy is pos-
sible. In this approach, checkpoints are created at the most
appropriate times in an uncoordinated way on the various
components of the monitored system. If recovery proves nec-
essary, then a set of checkpoints must be determined, more
specifically one checkpoint per component, which has the
property of consistency as described by K. Mani Chandy and
Leslie Lamport in “Distributed Snapshots: Determining Glo-
bal States of Distributed Systems” (ACM Transactions on
Computer Systems, Vol. 3, No. 1, February 1985, Pages
63-75). In an extreme case, if it is not possible to find a
consistent set of checkpoints, then the chosen rollback state is
the initial state of the system through the “domino effect”.
The advantages of this uncoordinated approach are that the
checkpoints are chosen in a targeted way per component,
which generates less overhead in synchronization and local
checkpointing. In addition, the storage of checkpoints is glo-
bally less bulky. Finally, there is no “global worst case” effect
typical of the coordinated approach. On the other hand,
checkpoints are not consistent by construction, which makes
the obsolescence of checkpoints slow or zero, in any case
difficult to determine. This means that the volume of storage
is a priori unbounded, which is problematic, especially in
embedded situations. The eligibility of this approach is thus
closely linked to the application context, which is still a major
drawback.

SUMMARY OF THE INVENTION

Being based on a hybrid checkpointing method, the check-
pointing being coordinated within process groups and not
coordinated between these groups, the purpose of the inven-
tionis notably to avoid both the aforementioned drawbacks of
coordinated checkpointing methods and the aforementioned
drawbacks of uncoordinated checkpointing methods. To this
end, the subject matter of the invention is a method for
enhancing the reliability of a system comprising a plurality of
processors and a memory. The method comprises a step of
grouping processes into a plurality of groups. It also com-
prises a step of saving, individually for each group of pro-
cesses, data stored in the memory which can be used by at
least one of the processes belonging to said group, so as to
restore an error-free global state of the system following an

20

40

45

50

55

4

error occurring in a processor executing one of the processes
belonging to said group, without having to restore the entire
memory.

Advantageously, each group may group processes sharing
a system resource. For example, the shared resource may be
the memory.

In a preferred embodiment, each group may be a data
dependency sphere able to group processes that can access
memory areas such that the union of all said areas is logically
connected, and such that any area among said areas has a
non-empty intersection with the union of all the other areas
among said areas.

Advantageously, the method may comprise a step of con-
finement of accesses to the memory by data dependency
sphere. This step of confinement may include a step of man-
aging access rights to the memory areas for each process, so
as to prevent the propagation of a logic error occurring in the
processor executing said process, and a step of managing
indicators of memory areas belonging to each data depen-
dency sphere.

The subject matter of the invention is also a device for
enhancing the reliability of a system comprising a plurality of
processors and a memory. The device comprises means for
grouping processes into a plurality of groups. It also com-
prises means for saving, individually for each group of pro-
cesses, the data stored in the memory which can be used by at
least one of the processes belonging to said group, so as to
restore an error-free global state of the system following an
error occurring in one of the processors executing one of the
processes belonging to said group, without having to restore
the entire memory.

Advantageously, the means for grouping may group pro-
cesses sharing a system resource. For example, the shared
resource may be the memory.

In a preferred embodiment, the means for grouping may
group processes by data dependency spheres, each data
dependency sphere being able to contain processes that can
access memory areas such that the union of all said areas is
logically connected and such that any area among said areas
has a non-empty intersection with the union of all the other
areas among said areas.

Advantageously, the device may comprise means for con-
fining accesses to the memory by data dependency sphere,
these means for confining being able to include means for
managing access rights to the memory areas for each process,
s0 as to prevent the propagation of a logic error occurring in
the processor executing said process, and means for manag-
ing indicators of memory areas belonging to each data depen-
dency sphere.

In one embodiment, for each data dependency sphere, the
saved data may include the data stored in the connected union
of the memory areas that can be accessed by one of the
processes belonging to said sphere. They may also include the
data stored in the registers of the processors executing one of
the processes belonging to said sphere. They may also include
the data stored in the pipeline stages of the processors execut-
ing one of the processes belonging to said sphere. They may
also include the data stored in the memory management units
or in the memory protection units included in the processors
executing one of the processes belonging to said sphere.
Finally, they may include the data stored in the cache memo-
ries of the processors executing one of the processes belong-
ing to said sphere.

In one embodiment, the means for grouping the processes
into data dependency spheres may be implemented in the
form of services supplied by the operating system of the

US 9,135,110 B2

5

system, these services being able to supply the various data
dependency spheres corresponding to all the currently
executed processes.

In one embodiment, the means for saving may include
means for coordinating the saves of the various data depen-
dency spheres corresponding to all the currently executed
processes, these means for coordinating being able to include
means for initiating a data save for a data dependency sphere
corresponding to currently executed processes, and means for
initiating, following the logic error that has occurred in one of
the processors executing one of the processes belonging to
said sphere, the restoration of the data saved for said depen-
dency data sphere exclusively.

In one embodiment, the means for confining may include a
memory management unit or a memory protection unit asso-
ciated with each of the processors of the system, said unit
being able to deny to the processor with which it is associated
access to the memory outside the area allocated to the process
being executed by said processor.

In one embodiment, the memory management unit or
memory protection unit may include means for managing
memory access rights, the current data dependency spheres
being dependent on these access rights.

The present invention has the main advantage of combin-
ing the advantages of coordinated policies, such as the rapid
obsolescence and bounded storage of checkpoints, with the
advantages of uncoordinated policies, such as the low syn-
chronization overhead, low checkpointing overhead and
overall optimum size of checkpoint storage.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention will become
apparent from the following description made with reference
to the accompanying drawings depicting:

FIG. 1, a schematic illustration of the principle of the data
dependency sphere according to the invention;

FIG. 2, an architecture diagram illustrating an example of
embodiment of a system according to the invention;

FIG. 3, an architecture diagram illustrating an example of
an embodiment of a memory controller according to the
invention capable of checkpointing by data dependency
sphere;

FIG. 4, a schematic illustration of an example of a saving
component according to the invention;

FIG. 5, a state machine illustrating an example of a
memory controller according to the invention;

FIGS. 6, 7 and 8, diagrams illustrating an example of a
write procedure according to the invention;

FIGS. 9 and 10, diagrams illustrating an example of a
recovery procedure according to the invention;

FIG. 11, a diagram illustrating an example of a procedure
for deleting an obsolete checkpoint according to the inven-
tion;

FIG. 12, an illustration of an example of a procedure for
creating a checkpoint according to the invention;

FIG. 13, an illustration of an example of a maintenance
procedure according to the invention.

DETAILED DESCRIPTION

In a basic embodiment of the invention, processes may be
grouped in a totally arbitrary manner, i.e. although these
processes strictly have no connection between them. Such an
arbitrary grouping of processes leads to an operation which,
although avoiding the drawbacks of the coordinated check-
pointing methods and uncoordinated checkpointing methods

10

15

20

25

30

35

40

45

50

55

60

65

6

of'prior art, is, however, not optimal. That is why, in the rest of
the present application, a better performing embodiment is
described, in which processes sharing memory areas are
grouped based on the Data Dependency Sphere concept
(SDD) according to invention.

But it will not escape the person skilled in the art, upon
reading the present application, that the scope of the present
invention extends beyond the sharing of memory areas. Pro-
cesses sharing a communication resource, or processes shar-
ing an input/output resource, or processes sharing a hardware
interrupt can be grouped according to the invention.

Data Dependency Sphere

FIG. 1 schematically illustrates the SDD principle accord-
ing to the invention. An SDD is a group of processes that use
common memory areas. Thus, in the example of FIG. 1, a
multiprocessor system comprises two processors P1 and P2
sharing a main memory MEM. The components supplying
the system’s resources, namely the processors P1, P2 and the
memory MEM, are connected by a data bus. A process for
which the Pid (“Process identifier”) is 1 uses data in a memory
area A of the memory MEM, which data is able to include the
code and the data. A process for which the Pid is 2 uses data
in areas B and C of the memory MEM. A process for which
the Pid is 3 uses data in area C and in area D of the memory
MEM. Two unconnected SDDs 10 and 20 may then be cre-
ated according to the invention. SDD 10 includes the process
Pid=1 and has memory area A for memory sector. SDD 20
includes the process Pid=2 with the process Pid=3 and has
memory areas B, C and D for memory sector. Considering the
memory sector of SDD 20, it can be seen that the union of the
area BuC able to be accessed by process 2 with the area CuD
able to be accessed by process 3 is logically connected
according to the present invention, since the union of the
representation of the area BuC in FIG. 1 with the representa-
tion of the area CuD in FIG. 1 is all of one piece in FIG. 1.
According to the present invention, it is a matter of logical
connectivity and not physical connectivity. The union of such
areas may not be physically connected, but since these areas
are represented in a geometrical space, the union of their
representations has the property of connectivity in the repre-
sentation space, as shownin FIG. 1. It can also be seen that the
intersection between the area BuC and the union of the other
areas forming the memory sector of SDD 20, namely only the
area CuD is not empty (since it is equal to C). It may be noted
that a process cannot belong to more than one SDD and that
an SDD may optionally consist of a single process.

In one embodiment, SDD management, which includes the
creation, modification and deletion of an SDD according to
the creations and deletions of processes on processors P1 and
P2, can be left to the programmer. The programmer should
then have excellent control of the resources used by the lat-
ter’s program, whether it involves computing resources such
as P1 and P2 or whether it involves memory storage resources
such as MEM.

Advantageously, a confinement sector for each of the
SDDs 10 and 20 can be created by using, associated with each
of'the processors P1 and P2, a component such as a Memory
Management Unit (MMU) or such as a Memory Protection
Unit (MPU). Once correctly configured, these MMUs or
MPUs may deny accesses beyond the memory sector of the
SDD of the processor with which they are respectively asso-
ciated. Usually, MMUs and MPUs are used for countering
possible programming errors. The present invention provides
for using them advantageously for countering the effects of
transient faults in logic.

US 9,135,110 B2

7

In a preferred embodiment, SDD management may be
implemented by system services, e.g. by system services
already used by the MM Us and MPUs, so as not to complicate
the task of the programmer. These system services are called
up, for example, in the following cases: when placing tasks on
the resources, when allocating memory, when requesting
access to a resource, when requesting access to an IPC (Inter
Process Communication) type communication resource.

Once the confinement sectors are set up according to the
invention, properties appear which optimize checkpointing,
so that it is much more effective than the coordinated and
uncoordinated techniques of prior art. The present invention
provides a policy of hybrid checkpointing, coordinated
checkpointing within SDDs and uncoordinated checkpoint-
ing between SDDs. This policy enables considerably
improved checkpointing systems to be implemented both
regarding processing and storage, especially in a multiappli-
cation and multiprocessor context.

General Architecture

FIG. 2 shows an architecture diagram of an example of
embodiment of a system according to the invention compris-
ing the processors P1 and P2. Each of the processors P1 and
P2 includes an MMU. The processors P1 and P2 are capable
of checkpointing, i.e. they are able to save and recover their
internal state (registers, pipeline stages, cache memory,
MMU state, etc.). To this end, the processors P1 and P2 also
include error detectors. The system comprises at least one
Memory Controller capable of checkpointing by SDD in the
memory MEM, i.e. it is capable of recovering the memory
sector corresponding to an SDD, as this sector was at a given
checkpoint. The memory MEM is not shown in FIG. 2 for
clarity’s sake. The system also comprises a Master CP (CP—
CheckPoint) component responsible for the coordination of
inter-SDD checkpointing. It also comprises a system bus and
a peripheral bus connected via a gateway acting as an inter-
connection system.

Each ofthe components capable of checkpointing manages
a set of checkpoints. For example, the processor P1 can man-
age a list of records, each record representing the internal
state of the processor P1 at an instant when the Master CP
component ordered a checkpoint. The processor P2 can
handle a similar list. The Memory Controller can itself man-
age a list of records, each record representing a sector of the
memory MEM corresponding to an SDD at an instant when
the Master CP component ordered a checkpoint. These lists
evolve according to the orders of the Master CP component.

Each of the components capable of checkpointing is also
capable, when the Master CP component requests it, of recov-
ering one of the checkpoints from the set of checkpoints that
it manages. For example, the processor P1 can restore its
internal state as it was at an instant when the Master CP
component ordered a checkpoint, thanks to the record of this
internal state that it has kept in its list. The processor P2 can do
the same. The Memory Controller can itselfrestore a sector of
the memory MEM corresponding to an SDD as it was at an
instant when the Master CP component ordered a checkpoint,
thanks to the record of this sector that it has kept in its list.

If an error occurs in the processor P1 or P2 while it is
executing a process P, using memory resources RM,,, then
this error may have different consequences. The memory
resources RM, of the process P, are the set of ranges that it
uses in reading/writing for storing its instructions and its data
in the memory MEM. These ranges may optionally be non-
contiguous. The error may remain latent, but it may also be
propagated by causing the system to gradually diverge from

10

15

20

25

30

35

40

45

50

55

60

65

8

an error-free execution. If the error is propagated, then it may
optionally resultin a memory write to an address that does not
form part of the memory resources RM,,. Assuming that an
error in the processor P, during the execution of the process P,
may be propagated anywhere in the memory would require
considering all the applications in their entirety, which would
tend to greatly increase checkpointing.

Error Confinement

This is why the invention provides an error confinement
system advantageously using an MMU or an MPU. In the
present example of embodiment of FIG. 2, this involves
MMU1 and MMU?2 being included in the processors P1 and
P2 respectively. An MMU, like an MPU, can be used notably
for managing access rights to memory by processes, using
services provided by the operating system. Until now, an
MMU or an MPU was used to avoid programming errors
committed by developers of applications and to guard against
malicious attacks. The invention provides for using them to
combat transient errors, by denying certain accesses to
memory. Thus, error confinement is achieved, which prevents
the propagation of errors outside the memory resources of a
given process. The invention also provides for matching the
confinement area to an SSD as previously defined. Thus, the
memory resources of a process are strictly confined to the
SSD of'the processor that executes said process.

Considering the example of FIG. 1 of allocation of areas A,
B, C and D in memory, MMUT1 can, for example, manage
according to the prior art the individual configuration of
access rights for the process for which the Pid is 2, as follows:

A: access denied;

B: Read/Write;

C: Read Write;

D: access denied;

Other areas: access denied.

Similarly, MMU?2 can manage according to the prior art the
individual configuration of access rights for the process for
which the Pid is 3, as follows:

A: access denied;

B: access denied;

C: Read;

D: Read/Write;

Other areas: access denied.

The invention provides for adding to these individual con-
figurations of access rights managed by the MMUs configu-
rations of checkpointing by SDD. Thus, the two processes
with Pids of 2 and 3 having been grouped together in the same
data dependency sphere 20 in order to form a coordinated
checkpoint for these two processes, the individual configura-
tions described above are not called into question, but may
advantageously be consulted in order to generate the follow-
ing checkpointing configuration for the SDD 20:

A: Inactive Checkpointing;

B: Active Checkpointing;

C: Active Checkpointing;

D: Active Checkpointing;

Other areas: Inactive Checkpointing.

Inaddition, a process may optionally not be assigned to any
SDD Such a process is then not protected against transient
errors in logic. Nevertheless, its memory access rights must
be restricted by appropriate programming ofthe MPU/MMU
components, so that when an error occurs during the execu-
tion thereof their access to the confined SDDs is denied. This

US 9,135,110 B2

9

error confinement system according to the invention reduces
the overall complexity of checkpointing.

Checkpointing Coordination

In general, the function of the Master CP component is to
coordinate checkpointing between the system components
capable of checkpointing, namely the processors P1 and P2
and the Memory Controller. This function notably includes
accepting and processing checkpoint creation requests by
these components. This function also includes sending orders
for new checkpoint creation on an SDD to the components
that host the SDD’s resources. This function also includes
sending orders for restoring a checkpoint on an SDD to the
components that host the SDD’s resources. The Master CP
component comprises several interfaces for ensuring this
complex coordination function.

The Master CP component of the present example of
embodiment of FIG. 2 may notably comprise a detection
interface. This interface is unidirectional and takes as input
events produced by the fault or error detectors present in the
system. This detection interface may be implemented in vari-
ous ways, such as by using dedicated threads or by using the
system bus or the peripheral bus. But other embodiments are
possible.

The Master CP component of the present example of
embodiment of FIG. 2 also comprises a coordination inter-
face. This coordination interface is bidirectional and its pur-
pose is to coordinate the various phases of checkpointing
between the system components capable of checkpointing,
namely the processors P1 and P2 and the memory controller.
This interface may be integrated on the system or peripheral
bus, but other embodiments are possible.

The various messages exchanged on the coordination inter-
face of the present example of embodiment of FIG. 2 are
listed in table 1 below, in which the component capable of
checkpointing designates either the processor P1, or the pro-
cessor P2, or the Memory Controller:

Thus, in the present example of embodiment of FIG. 2, the
Master PC component can accept and process a new check-
point creation request from a resource R thanks to the follow-
ing sequence:

Reception of the message “New checkpoint request” sent

by the resource R;

Determination of the SDD to which the resource R
belongs, denoted by SDDr;

Sending a message “checkpoint creation order on SDDr”
to each component having SDDr resources, i.e. having at
least one resource used by one of the SDDr constituent
processes.

If an error is detected, it is reported on the dedicated inter-
face of the Master CP component. When detection occurs in
the present example of embodiment of FIG. 2, the following
sequence may take place:

Determination of the SDD or SDDs potentially affected by
this error, which requires knowledge of the organization
of the memory in SDD sectors;

For each SDD, identified:

Determination of the checkpoint to be restored according
to the error;

Sending of the message “order for restoring checkpoint j
on SDD,” to the components of SDD,;

Waiting for the reception of messages “Restoration of
SDD, checkpoint j performed” sent by the components;

Sending message “Order for relaunching SDD,” to the
components belonging to this SDD,.

10

15

20

25

30

35

40

45

50

55

60

65

10

According to the features of the detection methods and the
frequency of creating new checkpoints, some old checkpoints
can be safely erased, since there may be more recent and
equally reliable checkpoints. Thus, in order to recover the
storage space for future checkpoints, the Master CP compo-
nent of the present example of embodiment of FIG. 2 may
determine the obsolescence of checkpoints and request their
deletion by the components, thanks to the following
sequence:

Determining that checkpoint j of SDD, is obsolete;

Sending message “Order for deleting checkpoint j of
SDD,” to the components of SDD,.

Since the coding of checkpoint numbers is performed over

a limited number of bits, if the system comes to evolve for
long enough, it may be that the maximum value of checkpoint
number is reached. From this moment, subsequent check-
points must be renumbered from zero. But the reuse of lower
numbers is only possible if the floor value for checkpoint
numbers has been raised, i.e. only if it has been declared that
the checkpoint numbers below a certain value are obsolete.
This floor value, denoted by Val_plancher in the present
example of embodiment of FIG. 2, is defined by the Master
CP component. Thus, in the present example of embodiment
of FIG. 2, the Master CP component may perform a grouped
obsolescence operation on all the checkpoints below a given
number for a given SDD, thanks to the following sequence:

Determining that all the checkpoints less than or equal to
checkpoint j of SDD, are obsolete;

Sending a message “Order for deleting all the checkpoints
below Val_plancher for SDD,” to the components of
SDD,.

A checkpoint creation initiating function may also prove
useful for certain applications, the idea being to create check-
points on SDDs without this being the result of a request
message from a component. For example, an application that
occupies an SDD may define the instants of checkpointing
periodically. This could be relevant if the application has no
input-output, like a very independent application, which may
make the taking of checkpoints optional. Thus, in the present
example of embodiment of FIG. 2, the Master CP component
may perform the following sequence:

Determining the instant of checkpointing on an SDD;;

Sending a message “checkpoint creation order on SDDr”
for each component having SDDr resources.

Memory Control

FIG. 3 is a diagram illustrating the architecture of the
memory controller in the example of embodiment of FIG. 2,
this controller being capable of checkpointing by SDD
according to the invention. The memory controller of the
present example of embodiment notably comprises a man-
agement module of the memory MEM, a management mod-
ule of a CP Log component and a management module of a
CP Cache structure. The memory controller also comprises a
system bus controller AHBCTRL (AHB—Advanced High-
performance Bus), a defragmentation module DEFRAG and
a checkpoint control module CP_CTRL. The roles of these
various modules will be described later. Indeed, the memory
controller of the present example of embodiment comprises a
first interface AHB with the system bus. It also comprises a
second interface with the memory MEM containing the cur-
rent data. It also includes a third interface APB with the
peripheral bus (Advanced Peripheral Bus) for the configura-
tion and control of the memory controller. It is notably via this
interface APB that the checkpointing protocol is imple-
mented with the Master CP component. In order to perform

US 9,135,110 B2

11

checkpointing by SDD, the present example of embodiment
of memory controller is notably capable of the following
operations:

Reading a word in the memory MEM;

Writing a word in the memory MEM;

Creating a checkpoint on an SDD;

Deleting a checkpoint on an SDD, this action being per-
formed when said checkpoint may be considered obso-
lete;

Deleting one or more checkpoints simultaneously, by
changing the floor value of the checkpoints of a given
SDD, also when the checkpoints concerned may be con-
sidered obsolete;

Recovery of an SDD checkpoint.

The present example of embodiment of memory controller
also comprises the CP (CP—CheckPoint) Log component,
which stores the information needed for restoring the
memory MEM as it was at the moment of any checkpoint
taken on any SDD, except for the checkpoints that have been
declared obsolete. Obsolete checkpoints are indeed intended
to be deleted from the CP Log component.

FIG. 4 schematically illustrates the CP Log component of
the present example of embodiment. It notably comprises a
memory consisting of several fields per line managed as a
circular buffer with the aid of two registers PT_DEBUT and
PT_FIN, which are pointers respectively to the beginning and
the end of the effective data area. The size of the circular
buffer is a generic parameter of the CP Log component and
can be adapted for correctly dimensioning the checkpointing
system. A field P determines the presence of a datum in the
line considered, the value O indicating the absence and the
value 1 indicating the presence of a datum. A field SDD
indicates the identifier of the SDD. A field CP stores the
identifier of the checkpoint on the SDD indicated by the
previous field. A field @ stores the address of the word. A field
Value stores the value as it was at the address @ at the instant
when the checkpoint was taken, on the corresponding SDD.

FIG. 5 shows an example of a global state machine of the
memory controller, notably the write procedure which will be
shown in detail in FIGS. 6, 7 and 8, the recovery procedure
which will be shown in detail in FIGS. 9 and 10, the procedure
for deleting an obsolescent checkpoint which will be shown
in detail in FIG. 11, the procedure for creating a checkpoint
which will be shown in detail in FIG. 12, the maintenance
procedure which will be shown in detail in FIG. 13 and finally
the read procedure.

Memory Control: Writing

FIG. 6 is a diagram illustrating a write operation to the
main memory MEM, such an operation being able to be
performed directly or requiring to be previously saved in the
circular buffer of the CP Log component, which generates an
additional latency. Indeed, only the first write to a given
address, on a given checkpoint of a given SDD is recorded.
Subsequent writes are then not recorded until the creation of
a new checkpoint on the SDD concerned. New writes are
stored in the location pointed to by PT_FIN; this pointer being
incremented at the end of the operation. It should be noted that
the area between PT_DEBUT and PT_FIN is kept in order by
SDD. This property is always true, even during defragmen-
tation operations which are described later in the present
application. If the circular buffer is full, i.e. if PT_FIN equals
PT_DEBUT, then writing to the buffer is blocked, just like the
write operation to the memory MEM. An indicator is then set
for the Master CP component. The initial phase of this write
is particularly sensitive since it is necessary to determine the

35

40

45

55

12

presence of an equivalent previous write inside the buffer. A
simple way to make this check would be to scan through the
buffer in the opposite direction from PT_FIN buffer until
encountering lines with the field P equal to 1, the SDD field
containing the identifier of the corresponding SDD and the
field CP containing the identifier of the previous checkpoint.
The search would stop there because the buffer is in order. But
this is not the approach used in the present example of
embodiment, as the worst case of write latency would then be
extremely high. Preferably, for determining the presence of
an equivalent previous write inside the buffer in the present
example of embodiment, the CP Cache dedicated structure is
used, as shown in FIG. 3. This CP Cache structure consists of
a memory portion and a combinatorial portion.

FIG. 71is adiagram illustrating the combinatorial part of the
CP Cache structure implementing the logic for determining
the presence of an equivalent previous write inside the circu-
lar bufter of the CP Log component. The memory part of the
CP Cache component, which will be simply called the
“cache” hereafter, consists of a certain number of lines, which
number must be correctly dimensioned. If this number of
lines is too low, then the cache is often full and checkpoints
must often be created needlessly. This affects the perfor-
mance of the system on several levels. Conversely, if the
number of lines is too high, then the cost in surface is prob-
lematic, both regarding memory storage elements and com-
binational logic. Each of the lines is subdivided into several
fields. A field P indicates the presence of an information line,
the value 0 indicating absence and the value 1 indicating
presence. A field @ stores an address already accessed from
the latest checkpoint creation on the SDD considered. A field
SDD stores the identifier of the SDD considered. The com-
binatorial part can be used to perform actions in a cycle on the
interpretation of the contents of the memory part, as well as on
its updating. Thus, if the output Hit of the CP Cache compo-
nentis 1, then an equivalent write has already been performed
at this address, on this checkpoint and on this SDD. If the
output Hit of the CP Cache component is O, then this is the
first write. Where applicable, the CP Log component buffer is
completed as previously described and this operation is asso-
ciated in parallel with a write operation to the cache.

FIG. 8 uses a diagram to illustrate how it is written in
parallel in the CP Log component buffer and in the CP Cache
component cache. The logic described in FIG. 8 adds the
fields @ and SDD of the write operation in the first free line
of'the cache, i.e. such that P=0, while setting the value of P to
1.Ifthe cache is full, then an indicator is set for the Master CP.

Memory Control: Recovery

FIG. 9 schematically illustrates control of the recovery
operation. As already mentioned previously, the circular
buffer is kept in order by SDD. When a recovery of an SDD
checkpoint is requested, the circular buffer of the CP Log
component is scanned through in the reverse direction, i.e.
from the pointer PT_FIN to the pointer PT_DEBUT. For each
line, if the field P is 1, if the field SDD contains the identifier
of the corresponding SDD and if the field CP contains an
identifier greater than or equal to the identifier of the check-
point to be restored, then the Value field of the line is copied
to the address indicated by the field @ and the field P is reset
to 0.

FIG. 10 schematically illustrates the SDD cleaning opera-
tion of which the CP Cache component is capable. For this,
the CP Cache component uses the specific logic, which, in
one cycle writes 0 in field P of all the lines of the cache for
which the value of the field SDD corresponds to the action of

US 9,135,110 B2

13

recovery. This disables the lines which may be reused in the
future for storing other write actions in memory. In addition,
the current checkpoint of the SDD which has been recovered
is configured to the recovered checkpoint.

As already explained previously, the current checkpoint
number of an SDD is a whole number that increases over time
during system operation. However, a hardware counter inevi-
tably ends up reaching saturation, due to the limited number
of bits for its encoding. For overcoming this problem, the
invention provides for introducing the concept of a floor value
into the system. When a recovery takes place, the relative age
of'the analyzed checkpoint must be compared to the age of the
checkpoint given as parameter. For each SDD, a floor value
termed Val_plancher is maintained, which can be used for
comparing checkpoints even in the event of saturation. Thus,
instead of making a direct comparison test on the values, such
as evaluating the logical value of (CP,<CP,,,,,,), an indirect
comparison test is performed by evaluating the logical value
of ((CP-Val_plancher) mod CP,,, <(CP, Val_
plancher) mod CP,

aram™

max)'

Memory Control: Deleting a Checkpoint

FIG. 11 schematically illustrates control of the obsoles-
cence operation. When an SDD checkpoint is declared obso-
lete, the stored elements containing the corresponding check-
point number on the corresponding SDD are deleted from the
circular buffer by writing the value 0 in the field P. A first
possibility is to make a particular checkpoint obsolete. A
second possibility is to make all checkpoints obsolete which
are older than a checkpoint passed as a parameter.

For each SDD, the floor value is updated during the obso-
lescence operation of all the checkpoints older than the
checkpoint passed as a parameter. The floor value is then
redefined and takes the value of the parameter supplied. This
technique enables the system to operate over an unbounded
time.

Memory Control: Creating a Checkpoint

FIG. 12 schematically illustrates control of the operation
for creating a new checkpoint on an SDD. The register indi-
cating the current checkpoint for the identified SDD is
updated incrementally. In addition, the SDD cleaning opera-
tion is activated on the corresponding SDD, as the next writes
in this SDD must be considered as new writes since the last
checkpoint.

Memory Control: Defragmentation

FIG. 13 schematically illustrates control of the operation of
defragmenting the circular buffer of the CP Log component.
Indeed, when checkpoint deletion operations take place, due
to obsolescence or recoveries, blank lines appear between
PT_DEBUT and PT_FIN, i.e. lines such that P=0. These lines
are not usable and constitute wasted space. In order to avoid
this, the controller must, whenever possible, perform a
defragmentation of the circular buffer of the CP Log compo-
nent. The controller manages two additional pointers on the
circular buffer: PT_LIBRE and PT_OBJET.

The algorithm is initialized by setting PT_LIBRE on the
first empty line from PT__ FIN. The algorithm is then a search
loop where at each step of the loop, the first occupied line
starting from PT_LIBRE is moved over it, and the pointer
PT_LIBRE progresses until it finds the next free location. The

20

30

40

45

50

14

pointer PT_FIN of the start of the buffer is updated when the
lines between PT_LIBRE and PT_DEBUT are free.

Memory Control: Reading

The read operation consists quite simply of reading in the
main memory MEM. Checkpoint capacity according to the
invention does not affect performance in terms of reading.

An additional advantage of the present invention is to be
compatible with fault detectors with high detection latencies,
placed outside the critical path, which enables high perfor-
mance.

The invention claimed is:

1. A method for enhancing the reliability of a system com-
prising a plurality of processors and a memory, each proces-
sor having access to a specific access area of the memory, the
method comprising:

grouping processes into a plurality of groups, each group

being a data dependency sphere grouping processes
according to their access areas of the memory, wherein a
data dependency sphere comprises areas of the memory
which satisfy the following properties:

a union of the access areas belonging to the same data
dependency sphere being logically connected, and
the intersection between access areas belonging to the

same data dependency sphere being not empty;

saving, individually for each group of processes, data
stored in the memory, the data being used by at least one
of the processes belonging to said group, to restore an
error-free global state of the system following an error
occurring in one of the processors executing one of the
processes belonging to said group, without restoring the
entire memory, and

defining a confinement sector for each of the data depen-

dency spheres, by:

denying, to a process, access beyond the memory sector
of'its data dependency sphere to prevent propagation
of a logic error occurring in the processor executing
said process; and

managing indicators of memory access areas belonging
to each data dependency sphere.

2. A device for enhancing the reliability of a system com-
prising a plurality of processors and a memory, each proces-
sor having access to a specific access area of the memory, the
device comprising:

services, supplied by an operating system, configured to

group processes into a plurality of groups, each group
being a data dependency sphere grouping processes
according to their access areas of the memory, wherein a
data dependency sphere comprises areas of the memory
which satisfy the following properties:

a union of the access areas belonging to the same data
dependency sphere being logically connected, and
the intersection between access areas belonging to the

same data dependency sphere being not empty;

at least one checkpointing component configured to save,

individually for each group of processes, data stored in
the memory, the data being used by at least one of the
processes belonging to said group, to restore an error-
free global state of the system following an error occur-
ring in one of the processors executing one of the pro-
cesses belonging to said group, without restoring the
entire memory, and

a memory unit associated with each of the processors con-

figured to access to the memory by data dependency

US 9,135,110 B2

15

sphere, the memory unit defining a confinement sector
for each of the data dependency spheres and being con-
figured to:
means for deny, to a process, access beyond the memory
sector of its data dependency sphere to prevent propa-
gation of a logic error occurring in the processor
executing said process; and
manage indicators of memory access areas belonging to
each data dependency sphere.
3. The device as claimed in claim 2, wherein, for each data
dependency sphere, the saved data comprise:
data stored in a connected union of the memory access
areas that can be accessed by one of the processes
belonging to said sphere,
data stored in registers of the processors executing one of
the processes belonging to said sphere,
data stored in pipeline stages of the processors executing
one of the processes belonging to said sphere,
data stored in memory management units or in memory
protection units (MPU) included in the processors
executing one of the processes belonging to said sphere,
or
data stored in cache memories of the processors executing
one of the processes belonging to said sphere.
4. The device as claimed in claim 2, wherein the services
for grouping the processes into data dependency spheres sup-

16

ply the data dependency spheres corresponding to all cur-
rently executed processes.

5. The device as claimed in claim 4, wherein the at least one
checkpointing component comprises a checkpointing com-
ponent configured to coordinate saving of the data depen-
dency spheres corresponding to all currently executed pro-
cesses, the checkpointing component being configured to:

initiate a data save for a data dependency sphere corre-

sponding to currently executed processes; and

initiate, following the logic error that has occurred in one of

the processors executing one of the processes belonging
to said sphere, restoration of the data saved for said data
dependency sphere exclusively.

6. The device as claimed in claim 2, wherein the memory
unit confining access to the memory sector includes a
memory management unit or a memory protection unit asso-
ciated with each of the processors of the system, said memory
management unit or memory protection unit denying, to the
processor with which it is associated, access to the memory
unit outside of the area allocated to the process being
executed by said processor.

7. The device as claimed in claim 6, wherein the memory
management unit or the memory protection unit is configured
to manage memory access rights, the current data dependency
spheres being dependent on the memory access rights.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,135,110 B2 Page 1 of 1
APPLICATION NO. 1 13/991128

DATED : September 15, 2015

INVENTORC(S) : Mickael Cartron et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims:

Column 15 Line 4 please replace “means for deny, to a process” with --deny, to a process--.

Signed and Sealed this
Twenty-sixth Day of January, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

